메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국생산제조학회 한국생산제조학회지 한국공작기계학회 논문집 Vol.18 No.1
발행연도
2009.2
수록면
42 - 49 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study proposes a web-based remote monitoring system for evaluating degradation of machine tools using ART2(Adaptive Resonance Theory 2) neural network. A number of studies on the monitoring of machine tools using neural networks have been reported. However, when normal condition is changed due to factors such as maintenance, tool change etc., or a new failure signal is generated, such algorithms need to be entirely retrained in order to accommodate the new signals. To cope with such problems, this study develops a remote monitoring system using ART2 in which new signals when required are simply added to the classes previously trained. This system can monitor degradation as well as failure of machine tools. To show the effectiveness of the proposed approach, the system is experimentally applied to monitoring a simulator similar to the main spindle of a machine tool, and the results show that the proposed system can be extended to monitoring of real industrial machine tools and equipment.

목차

Abstract
1. 서론
2. 웹 기반 원격 모니터링 시스템의 개요
3. 실험 내용 및 결과
4. 결론
참고문헌

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-552-015854928