메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국대기환경학회 한국대기환경학회지(영문) 한국대기환경학회지 제24권 제E2호
발행연도
2008.12
수록면
63 - 73 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, neural network models (NNMs) were examined as alternatives to dispersion models in predicting the short-term SO₂ concentrations in a coastal area because the performances of dispersion models in coastal areas have been found to be unsatisfactory. The NNMs were constructed for various combinations of averaging time and prediction time in advance by using the historical data of meteorological parameters and SO₂ concentrations in 2002 in the coastal area of Boryeung, Korea. The NNMs were able to make much more accurate predictions of 1 hr SO₂ concentrations at ground level in the morning in coastal area than the atmospheric dispersion models such as fumigation models, ADMS3 and ISCST3 for identical conditions of atmospheric stability, area, and weather. Even when predictions of 24-h SO₂ concentrations were made 24 hours in advance, the predictions and measurements were in good accordance (correlation coefficient=0.65 for n=216). This accordance level could be improved by appropriate expansion of training parameters. Thus it may be concluded that the NNMs can be successfully used to predict short-term ground level concentrations averaged over time less than 24 hours even in complex terrain. The prediction performance of ANN models tends to improve as the prediction lagging time approaches the concentration averaging time, but to become worse as the lagging time departs from the averaging time.

목차

Abstract
1. INTRODUCTION
2. DEVELOPMENT OF ANN MODELS
3. USE OF ANN MODELS FOR PREDICTING AIR POLLUTION IN COMPLEX COASTAL TERRAIN
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-539-015839459