메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Harten-Lax-van Leer-contact (HLLC) and Roe schemes are good approximate Riemann solvers which have the ability to resolve shock, contact, and rarefaction waves. However, they can produce spurious solutions. called shock instabilities. in the vicinity of strong shock. In strong expansion flows, the Roe scheme can admit nonphysical solutions such as expansion shock, and it sometimes fails. We propose simple methods to prevent such problems. High-order accuracy is achieved using the weighted average flux (WAF) schemes. Using the WAF scheme, the HLLC and Roe schemes can be expressed in similar form. The HLLC and Roe schemes are tested against Quirk's test problems, and shock instability appears in both schemes. To remedy shock instability, we propose a control method of flux difference across the contact and shear waves. To catch shock waves, an appropriate pressure sensing function is defined. Using the proposed method, shock instabilities are successfully controlled. For the Roe scheme. Harten-Hymann entropy fix method using Harten-Lax-van Leer (HLL)-type switching is suggested and the modified Roe scheme works successfully with the suggested method.

목차

Abstract
1. INTRODUCTION
2. APPROXIMATE RIEMANN SOLVERS
3. Shock Instability and its Cure
4. NUMERICAL RESULTS
5. CONCLUSION
ACKNOWLEDGMENTS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0