메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
히스토그램은 데이타베이스 시스템에서 질의 결과 크기를 추정하는 데 널리 이용되고 있다. 히스토그램 기법에서 질의 결과 크기에 대한 추정은 각 버킷 영역 내의 객체들이 균등하게 분포한다는 가정하에 이루어진다. 그러나, 주어진 질의 영역 내의 객체들은 균등하게 분포하지 않을 수 있다. 다시 말해서, 버킷 영역 내에 높은 밀도의 객체 군집 즉 클러스터가 존재할 수 있으며 이로 인하여 히스토그램의 정확도가 현저히 저하될 수 있다. 본 연구의 목적은 히스토그램의 정확도를 향상시키는 데 있다. 이를 위하여 본 연구는 클러스터를 고려한 새로운 히스토그램 기법을 제안한다. 제안하는 기법은 주어진 데이타 분포내에 존재하는 고 밀도 영역을 탐색하고 이를 히스토그램 생성에 활용한다. 제안하는 기법은 클러스터에 의한 정확도 저하를 효과적으로 감소시킴으로써 데이타가 균등하게 분포하지 않은 상황에서 향상된 성능을 제공할 수 있다. 실험을 통해 본 연구는 제안하는 기법이 기존 기법의 성능을 최대 74% 향상시킴을 확인하였다.

목차

요약
Abstract
1. 서론
2. 예비 지식 및 관련 연구
3. 고 밀도 영역을 이용한 히스토그램 기법
4. 성능 평가
5. 결론 및 향후 계획
참고문헌
부록 A

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0