메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제35권 제6호
발행연도
2008.12
수록면
459 - 468 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이타 스트림이란 실시간에 연속적으로 빠르게 생성되는 데이타 집합을 의미한다. 이러한 데이타 스트림들은 최근 사회가 발달과 더불어 정보 환경도 급속도로 발전함에 따라 센서 데이타, 교통상황수집 자료, 웹 클릭 모니터링 등과 같은 많은 응용 분야에서 적용되고 있다. 이러한 형태의 데이트 스트림을 처리하기 위해서는 미리 등록된 질의에 대하여 새롭게 들어오는 스트림 데이타의 결과를 계속적으로 생성하게 된다. 이와 같은 이유로 끊임없이 들어오는 스트림 데이타들을 빠르게 처리하는 것이 이 분야에서 주된 이슈가 되었으며, 이를 위한 방법으로 등록된 질의들을 효율적으로 처리하기 위한 질의 최적화 분야에 많은 연구가 있었다. 그러므로 본 논문에서는 기존 연구에서 사용되었던 그리디 방법을 기반으로 비용 모델을 이용하여 최소의 비용을 갖는 질의 계획을 선택하는 확장된 그리디 방법(EGA)을 제시한다. 확장된 그리디 방법은 알고리즘의 정확성이 떨어지는 그리디 알고리즘의 단점을 극복하기 위하여 비용이 가장 작은 연산 하나를 선택하는 대신 비용이 작은 연산들의 집합을 선택한다. 이 연산들의 집합의 크기는 알고리즘의 정확성과 수행 시간에 영향을 끼치며, 두 개의 변수에 의해서 적응적으로 조절될 수 있다. 실험에서는 다양한 스트림 환경에서 대부분 그리디 알고리즘보다 향상된 성능을 보장하고, 두 변수에 의한 알고리즘의 성능 및 수행 시간 차이를 보여줌으로써 본 알고리즘의 효율성을 검증하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 선행 지식
4. 확장된 그리디 알고리즘(EGA)
5. 성능 평가
6. 결론
참고문헌

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0