메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국항공우주학회 International Journal of Aeronautical and Space Sciences KSAS International Journal Volume.5 Number.1
발행연도
2004.5
수록면
94 - 100 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Ionospheric time delay is the biggest error source for single-frequency DGPS applications, including time transfer and Wide Area Differential GPS (WADGPS). Currently, there are many attempts to develop real-time ionospheric time delay estimation techniques to reduce positioning error due to the ionospheric time delay.
Klobuchar model is now widely used for ionospheric time delay calculation for single-frequency . users. It uses flat surface at night time and cosine surface at day time[1]. However, the model was developed for worldwide ionosphere fit, it is not adequate for local area single-frequency users who want to estimate ionospheric time delay accurately [2] Therefore, 3-D ionosphere model using tomographic estimation has been developed. 3-D tomographic inversion model shows better accuracy compared with prior algorithms[3]. But that existing 3-D model still has problem that it requires many coefficients and measurements for good accuracy. So, that algorithm has limitation with many coefficients in continuous estimation at the small region which is obliged to have fewer measurements.
In this paper, we developed an modified 3-D ionospheric time delay model using tomography, which requires only fewer coefficients. Because the combinations of our base coefficients correspond to the full coefficients of the existing model, our model has equivalent accuracy to the existing. We confirmed our algorithm by simulations. The results proved that our modified algorithm can perform continuous estimation with fewer coefficients.

목차

Abstract
Introduction
Modified Tomographic Estimation
Simulation and Results
Conclusions
Acknowledgement
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0