메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
한국어의 자연어처리 및 정보검색분야에서 자동 띄어쓰기는 매우 중요한 문제이다. 신문기사에서조차 잘못된 띄어쓰기를 발견할 수 있을 정도로 띄어쓰기가 어려운 경우가 많다. 본 논문에서는 자기 조직화 n-gram모델을 이용해 자동 띄어쓰기의 정확도를 높이는 방법을 제안한다. 본 논문에서 제안하는 방법은 문맥의 길이를 바꿀 수 있는 가변길이 n-gram모델에 비해 더욱 높은 성능을 얻을 수 있다. 자기조직화 n-gram모델은 최적의 문맥의 길이를 찾기 위해 문맥의 길이를 늘였을 때 나타나는 확률분포와 문맥의 길이를 늘이지 않았을 때의 확률분포를 비교하여 그 차이가 크다면 문맥의 길이를 늘이고, 그렇지 않다면 문맥의 길이를 자동으로 줄인다. 즉, 더 많은 정보가 필요한 경우는 데이터의 차원을 높여 정확도를 올리며, 이로 인해 증가된 계산량은 필요 없는 데이터의 양을 줄임으로써 줄일 수 있다. 본 논문에서는 실험을 통해 n-gram모델의 자기 조직화 구조가 기본적인 모델보다 성능이 뛰어나다는 것을 확인하였다.

목차

요약
1. 서론
2. 관련 연구
3. n-gram 모델을 이용한 자동 띄어쓰기
4. 자기 조직화 n-gram모델
5. 실험
6. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0