메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
일반적으로 중국어의 명사구는 기본명사구(base noun phrase), 최장명사구(maximal noun phrase) 등으로 분류된다. 최장명사구에 대한 정확한 식별은 문장의 전체적인 구조를 파악하고 정확한 구문 트리(parse tree)를 찾아내는데 중요한 역할을 한다. 본 논문은 두 단계 학습모델을 이용하여 최장명사구 자동식별을 진행한다. 먼저 기본명사구, 기본동사구, 기본형용사구, 기본부사구, 기본수량사구, 기본단문구, 기본전치사구, 기본방향사구 등 8가지 기본구를 식별한다. 다음 기본구의 중심어(head)를 추출해 내고 이 정보를 이용하여 최장명사구의 식별을 진행한다. 본 논문에서 제안하는 방법은 기존의 단어레벨의 접근방법과는 달리구레벨에서 학습을 진행하기 때문에 주변문맥의 정보를 많이 고려해야 하는 최장명사구 식별에 있어서 아주 효과적인 접근방법이다. 후처리 작업을 하지 않고 기본구의 식별에서 25개 기본구 태그의 평균 F-measure가 96%, 평균길이가 7인 최장명사구의 식별에서 4개 태그의 평균 F-measure가 92.5%로 좋은 성능을 보여주었다.

목차

요약
1. 서론
2. 관련 연구
3. 두 단계 학습을 통한 중국어 최장명사구 식별
4. 실험 결과
5. 결론 및 향후 작업
감사의 글
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0