메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국산업응용수학회 한국산업응용수학회 학술대회 논문집 한국산업응용수학회 학술대회 논문집 Vol.4 No.3
발행연도
2008.5
수록면
177 - 181 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
An iterative substructuring method with Lagrange multipliers is considered for the second order elliptic problem, which is a variant of the FETI-DP method. The standard FETI-DP formulation is associated with the saddle-point problem which is induced from the minimization problem with a constraint for imposing the continuity across the interface. Starting from the slightly changed saddle-point problem by addition of a penalty term with a positive penalization parameter η, we propose a dual substructuring method which is implemented iteratively by the conjugate gradient method. Performance of such a dual iterative substructuring method is directly connected with the condition number of a relevant dual system. For η = 0, the proposed method is reduced to the FETI-DP method. For the preconditioned FETI-DP with the optimal Dirichlet preconditioner, it is well-known that the condition number is bounded by a polylogarithmic factor: (1 + log(H/h))² in two dimensions and (H/h)(1 + log(H/h))² in three dimensions. To the contrary, in spite of the absence of any preconditioners, it is shown that the proposed method is numerically scalable in the sense that for a large value of η, the condition number of the resultant dual problem is bounded by a constant independent of both the subdomain size H and the mesh size h. We deal with a computational issue and present numerical results. Furthermore, we extend the proposed method to the three dimensional problem.

목차

ABSTRACT
INTRODUCTION
UNDERSTANDING OF MAIN IDEA
DUAL ITERATIVE SUBSTRUCTURING METHOD
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0