메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 기존의 정보량(Entropy) 기반 클러스터링 기법을 향상시키기 위한 방법으로서 퍼지 정보량을 이용하였다. 가우시안 혼합 모델을 이용하면, 프로토타입의 목적 함수를 이용하는 클러스터링 기법보다 향상된 결과를 얻을 수 있고 Parameter의 조정이 요구되지 않는다. 그러나, 가우시안 혼합 모델의 사용은 주어진 패턴 집합을 클러스터링하는데 계산량의 증가를 초래하게 된다. 본 논문에서는 가우시안 혼합 모델의 정형화에 요구되는 계산량을 감소시키는 방법을 제시한다. 또한 퍼지정보량(Fuzzy Entropy)을 적용하여 기존의 정보량 기반의 클러스터링 결과와 비교 분석하였다.

목차

요약
1. 서론
2. 가우시안 혼합 모델링
3. 퍼지 정보량
4. 퍼지 정보량 최소화
5. 실험결과
6. 결론 및 향후과제
7. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015066663