메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제17권 제5호
발행연도
2007.10
수록면
707 - 711 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Microarray gene expression data is believed to show the functions of living organism through the gene expression values. We have studied a method to get the informative genes from the microarray gene expression data. There are several ways for this. In recent researches to get more sophisticated and detailed results, it has used the intelligence information theory like fuzzy theory. Some methods are to add fudge factors to the significance test for more refined results.
In this paper, we suggest a method to get informative genes from microarray gene expression data. We combined the difference of means between two groups and the fuzzy membership degree which reflects the variance of the gene expression data. We have called our significance test the Fuzzy Information method for Gene ExpRession data(FIGER). The FIGER calculates FIGER variation ratio and FIGER membership degree to show how strongly each object belongs to the each group and then it results in the significance degree of each gene. The FIGER is focused on the variation and distribution of the data set to adjust the significance level. Our simulation shows that the FIGER-test is an effective and useful significance test.

목차

Abstract
1. 서론
2. Related Researches
3. FIGER Significance Test
4. Simulation Method and Results
5. Conclusion
6. References
저자소개

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015048883