메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ryohei Shiraishi (Kogakuin University) Takashi Nakakuki (Kogakuin University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2012
발행연도
2012.10
수록면
1,527 - 1,530 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recent technological progress on high-throughput measurements for gene expression such as microarray analysis enables us to collect time-series gene expression data for each of tens of thousands of genes. Although a genomic analysis with those data has identified key genes relating to various diseases, few results on estimation of gene regulatory networks with real microarray data are available so far. Recently, the immediately early response (IER) genes upon epidermal growth factor stimulation in a human breast cancer cell line, MCF-7, have been identified in which time-course microarray data were measured during 90 minutes and 63 IER genes were chosen from tens of thousands of genes by using statistical analysis. In this paper, we estimate the gene regulatory networks among the 63 IER genes. To this end, we apply an estimation method based on a mixed logic dynamical modeling developed in an earlier study to the microarray data. However, the original method is executable for continuous gene expression time-series data whereas the real microarray time-course data have very few time points. In addition, some presetting parameters in the model are critical for a successful result on a network estimation. Then, we add a preprocessing and Monte Carlo-based calculation for the original method.

목차

Abstract
1. INTRODUCTION
2. MICROARRAY DATA OF MCF-7 CELLS
3. MLD MODELING
4. MAIN RESULTS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0