메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제14권 제1호
발행연도
2004.2
수록면
82 - 87 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
심전도 데이터는 심장의 전기적인 신호의 다양한 파형으로 이루어지며, 이와 같은 파형을 분석하고 분류하기 위하여 데이터마이닝 기법을 이용할 수 있다. 심전도신호를 분류하기 위한 기존의 연구들은 왜곡된 특징추출과 과적합 등 문제점을 가지고 있다.
본 연구에서는 이와 같은 문제점들을 해결하기 위하여 BP 알고리즘과 SVM을 이용하여 심전도 신호를 분류해 보았다. 그 결과 SVM이 신경망에서 발생하는 과적합을 효과적으로 방지하고, 유일한 전역해를 보장함으로써, 일반화 성능에서 우수함을 보이고 있다는 사실을 확인하였다.

목차

요약
Abstract
1. 서론
2. 심전도 신호의 패턴 분류
3. 실험 및 결과
4. 결론 및 향후 과제
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014902564