메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제18권 제9호
발행연도
2013.9
수록면
43 - 51 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
신뢰성 있는 부정맥 진단을 위해서는 리듬 구간 및 심박 단위의 종합적인 분석을 통하여 심전도 신호에 대한 분류 결과가 제시되어야 한다. 본 논문에서는 심전도 신호의 특징점에 기반하여 규칙기반 분류를 이용한 일정 구간의 리듬 분석을 수행하고 SVM기반 분류를 이용한 심박 단위의 리듬분석을 첨가하였다. 규칙기반 분류에서는 리듬 구간의 특징에 대하여 임상 자료로부터 도출된 규칙 베이스를 이용하여 리듬 유형을 분류하도록 하며, SVM기반 분류에서는 심박 단위의 특징에 대하여 미리 학습된 다중 SVM 분류기를 이용하여 단조 리듬 및 주요 비정상 심박을 분류하도록 한다. MIT-BIH 부정맥 데이터베이스를 이용한 실험을 통하여 11가지 리듬 유형에 대하여 규칙기반 방법만을 적용하였을 경우 68.52%, 규칙기반과 SVM기반의 융합 방법을 적용하였을 경우 87.04%의 분류 성능을 각각 보였다. SVM기반 방법으로 단조 리듬과 배열 리듬에 대한 오분류 개선을 통하여 분류 성능에서 19% 정도가 향상됨을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0