메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제14권 제3호
발행연도
2004.6
수록면
357 - 362 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
언어 모델은 음성 인식이나 필기체 문자 인식 등에서 다음 단어를 예측함으로써 인식률을 높이게 된다. 그러나 언어 모델은 그 도메인에 따라 모두 다르며 충분한 분량의 말뭉치를 수집하는 것이 거의 불가능하다. 본 논문에서는 N그램 방식의 언어모델을 구축함에 있어서 크기가 제한적인 말뭉치의 한계를 극복하기 위하여 두개의 말뭉치, 즉 소규모의 구어체 말뭉치와 대규모의 문어체 말뭉치의 통계를 이용하는 방법을 제시한다. 이 이론을 검증하기 위하여 수십만 단어 규모의 방송용 말뭉치에 수백만 이상의 신문 말뭉치를 결합하여 방송 스크립트에 대한 퍼플렉시티를 30% 향상시킨 결과를 획득하였다.

목차

요약
Abstract
1. Introduction
2. Motivation: the lack of right corpus
3. Related Work
4. Combining two models
5. Results
6. Conclusion and Future Work
References
저자소개

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014899142