메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제13권 제3호
발행연도
2003.6
수록면
328 - 333 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
메모리기반 추론에서 기억공간의 효율적인 사용과 분류성능의 향상을 위하여 제안된 NGE이론에 기반한 최근접 초월평면법은 학습자료를 초월평면상에 투영시켜 생성된 초월평면을 이용한다. 이때 학습자료에 포합될 수 있는 오류자료가 그대로 초월평면에 포함되어 분류의 정확성을 저해하는 요인으로 작용하는 단점을 가지고 있다.
본 논문에서는 기존의 최근접 초월평면의 단점을 보완한 초월평면 최적화(OH : Optimizing Hyperrectangle) 방법을 제안한다. 제안된 방법은 특징가중치 벡터를 초월평면마다 할당하여 학습하고, 학습 후 생성된 모든 초월평면에 대해 특징별 최빈구간을 추출하여 최적초월평면을 구성하여 분류 시 사용한다.
제안된 방법은 EACH시스템과 마찬가지로 k-NN분류기에서 필요로 하는 메모리 공간의 40%정도를 사용하며, 분류에 있어서는 EACH시스템 보다 우수한 인식 성능을 보이고 있다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 초월평면 최적화 방법
4. 실험 및 고찰
5. 결론 및 향후 연구과제
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014819062