메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제19권 제1호
발행연도
2014.1
수록면
149 - 156 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
중첩형 일반화 사례 (NGE, Nested Generalized Exemplar) 기법은 거리 기반 분류를 최적 일치 규칙으로 사용하며, 노이즈에 대한 내구력을 증가시켜 주는 동시에 모델 크기를 감소시키는 장점이 있다. NGE 학습 중 생성된 교차(cross)나 중첩(overlap) 현상은 분류성능을 저해하는 요인으로 작용한다. 따라서 본 논문은 NGE 학습 중 생성된 교차나 중첩 현상이 발생한 초월 평면에대해 상호정보가 가장 큰 구간을 분리하여, 새로운 초월평면을 구성하게 하여, 분류성능 향상시키고 초월평면의 개수를 감소시키는 기법인 DHGen(Dominant Hyperrectangle Generation) 알고리즘을 제안하였다. 제안한 DHGen은 분류성능면에서 kNN과 유사하고 NGE이론으로 구현한 EACH보다 우수함을 UCI Machine Learning Repository에서 벤치마크데이터를 발췌한 실험자료로 입증하였다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0