메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제17권 제7호
발행연도
2007.12
수록면
957 - 963 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 비선형 지속 모음 모델링을 위한 최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법을 소개하고 분석하였다. 비주기적인 파형 특성을 갖는 양성 후두 질환자 43명의 지속 모음을 대상으로 한 실험에서 제안된 비선형 합성기는 거의 완벽하게 혼란한 지속 모음을 생성하고 선형 예측 코딩은 할 수 없는 주파수 변동과 같은 자연스러운 음의 특성 또한 보존할 수 있었다. 하지만 일부 모음의 합성 결과 실제 원음과 다른 차이점을 보였다. 이러한 결과들은 단일 밴드 모델이 음의 고주파 성분을 조정, 분해 못하기 때문에 발생한 것이라 가정된다. 그러므로 웨이블릿 필터 뱅크를 이용한 멀티 밴드 모델을 단일 밴드 모델과 대치하여 실험을 수행한 결과 향상된 안정성을 보였다. 결과적으로 최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법은 성공적으로 원음에 가까운 합성음을 생성할 수 있다는 것을 확인 할 수 있었다.

목차

요약
Abstract
1. 서론
2. LS-SVR 기반 NAR 모델
3. 실험 방법
4. 실험 및 성능 분석
5. 결론
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014798595