메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제11권 제6호
발행연도
2001.12
수록면
491 - 499 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 유전알고리즘(Genetic Algorithm)과 FCM(Fuzzy c-means) 클러스터링을 이용하여 TSK(Takagi-Sugeno-Kang)형태의 퍼지 규칙 생성과 퍼지 시스템(FCM-ANFIS)을 효과적으로 구축하는 방법을 제안한다. 구조동정에서는 먼저 PCA(Principal Component Analysis)을 이용하여 입력 데이터 성분간의 상관관계를 제거한 후에 FCM을 이용하여 클러스터를 생성하고 성능지표에 근거해서 타당한 클러스터의 수, 즉 퍼지 규칙의 수를 얻는다. 파라미터 동정에서는 유전알고리즘을 이용하여 전제부 파라미터를 최적에 가깝도록 탐색을 시도한다. 결론부 파라미터는 유전알고리즘에 의한 탐색공간을 줄이기 위해 전제부 파라미터가 결정되면 RLSE(Recursive Least Square Estimate)에 의해 추정되어진다. 이렇게 함으로서 타당한 규칙 수와 효율적인 퍼지 규칙을 얻을 수 있다. 제안된 방법의 유용성을 보이기 위해 Box-Jenkins의 가스로 데이터와 Rice taste 데이터의 모델링에 적용하여 이전의 연구보다 좋은 결과를 보임을 알 수 있었다.

목차

요약
Abstract
1. 서론
2. GA와 FCM 클러스터링에 의한 퍼지 시스템
3. 시뮬레이션 및 결과
4. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014805117