메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다수의 사용자들의 협력태깅으로 생성되는 폭소노미는 웹 2.0을 이끌고 있는 대표적인 요소이다. 태그는 어떤 웹 문서를 기술하는 웹 메타데이타라고 할 수 있는데, 협력태깅으로 이루어진 태그들 사이의 의미적인 상하위 관계를 밝혀내 이를 시각화한다면, 사용자들이 문서의 메타데이타를 보다 직관적으로 이해하는 데 도움을 줄 수 있다. 이에 본 논문에서는 del.icio.us의 태그들을 대상으로 하여, Wikipedia 텍스트를 이용한 태그들간 상하위 관계 산출 기법을 제안한다. 이를 위해 태그들이 Wikipeida 텍스트상에서 출현하는 빈도수를 기반으로 태그들간 상하위 관계를 산출하는 통계적인 모델링을 제안하였고, 각각의 태그를 그에 상응하는 Wikipedia 텍스트에 매핑시키는 TSD 기법을 제안하였다. 이렇게 산출된 상하위 관계 짝들은 시각화 기법을 통하여 효과적으로 화면에 표현되었다. 실제로 우리가 제안하는 알고리즘이 태그들간의 상하위 관계들을 높은 정확도로 찾아내었음을 실험을 통해 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 상하위 관계의 산출
4. 폭소노미 시각화
5. 성능평가
6. 결론 및 향후연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014777083