메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Spoken dialog tasks incur many errors including speech recognition errors, understanding errors, and even dialog management errors. These errors create a big gap between the user's intention and the system's understanding, which eventually results in a misinterpretation. To fill in the gap, people in human-to-human dialogs try to clarify the major causes of the misunderstanding to selectively correct them. This paper presents a method of clarification techniques to human-to-machine spoken dialog systems. We viewed the clarification dialog as a two-step problem - Belief confirmation and Clarification strategy establishment. To confirm the belief, we organized the clarification process into three systematic phases. In the belief confirmation phase, we consider the overall dialog system's processes including speech recognition, language understanding and semantic slot and value pairs for clarification dialog management. A clarification expert is developed for establishing clarification dialog strategy. In addition, we proposed a new design of plugging clarification dialog module in a given expert based dialog system. The experiment results demonstrate that the error verifiers effectively catch the word and utterance-level semantic errors and the clarification experts actually increase the dialog success rate and the dialog efficiency.

목차

1. INTRODUCTION
2. RELATED WORKS
3. USER FRIENDLY TV PROGRAM GUIDE SYSTEM WITH SPEECH INTERFACE
4. SLU-BASED CONFIDENCE MEASURE AND CLARIFICATION STRATEGY
5. EXPERT-BASED CLARIFICATION DIALOG STRATEGY
6. EXPERIMENTS AND ANALYSES
7. CONCLUSION
ACKNOWLEDGEMENTS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014765107