메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In fingerprints, singular regions including core or delta points have different directional characteristics from non-singular regions. Generally, the ridges of singular regions change more abruptly than those of nonsingular areas, thus in order to effectively enhance fingerprint images regardless of region, local ridge curvature information needs to be used. In this paper, we present an improved Directional Filter Bank (DFB)-based fingerprint image enhancement method that effectively takes advantage of such ridge curvature information. The proposed method first decomposes a fingerprint image into 8 directional subbands using the DFB and then classifies the image into background, low curvature, and high curvature regions using the directional energy estimates calculated from the subbands. Thereafter, the weight values for directional subband processing are determined using classification information and directional energy estimates. Finally, the enhanced image is obtained by synthesizing the processed subbands. The experimental results show that the proposed approach is effective in enhancing both singular and non-singular regions.

목차

Abstract
1. INTRODUCTION
2. FINGERPRINT IMAGE ENHANCEMENT
3. EXPERIMENTAL RESULTS
4. CONCLUSIONS AND FUTURE WORK
ACKNOWLEDGEMENTS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-410-014694061