메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국산업응용수학회 한국산업응용수학회 학술대회 논문집 한국산업응용수학회 학술대회 논문집 Vol.1 No.1
발행연도
2006.5
수록면
183 - 184 (2page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most of the meshless or mesh-free methods rely on the meshless approximation methods.
Through the meshless approximations, the shape functions for unknown variables, which are utilized in variational weak forms of ordinary or partial differential equations, can be constructed only with the nodal points with no aid of well-defined mesh. The feature of independency of meshes in constructing the shape functions gives various potentials in dealing with engineering problems. And the drawbacks encountered in applying the finite element methods, such as human labor-intensive meshing, degradation of solution accuracy according to the element distortions, burden of re-meshing during large deformations, locking, and others, have been expected to be eliminated or alleviated by adopting the meshless or mesh-free approach.
With the anticipation, considerable research efforts have been given to the field of meshless approximation and its application to the analysis of engineering problems. As a result, various meshless analysis methods have been proposed to alleviate the drawbacks of mesh (or grid) dependent conventional analysis methods such as finite element or finite difference methods. They are SPH(smoothed particle hydrodynamics), EFG(element free Galerkin method), Generalized Finite Difference, Generalized Finite Element, MLPG(meshless local Petrov-Galerkin method), and others[1]. Even though those have their own salient features, all of them utilize the nodal shape functions obtained from the meshless(or mesh-free) approximation schemes for the weak forms or differential equations. Consequently all of the meshless analysis methods inherit the common character from the meshless approximation, and the character makes it possible to eliminate or alleviate the mesh-related drawbacks in the conventional numerical analysis methods such as finite element or finite difference methods. The most representative me ... 전체 초록 보기

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-410-014678907