메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국산업응용수학회 한국산업응용수학회 학술대회 논문집 한국산업응용수학회 2005 학술대회 및 정기총회
발행연도
2005.11
수록면
51 - 52 (2page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years, there have been extensive studies on biological systems such as proteins in various aspects. Being one of the important aspect, geometry is not the exception at all since the morphology mostly determines the functions of molecular systems. Hence, a strong driving force has been focused on the geometric aspect of such biological systems. Due to this consideration, the representation of proximity information among atoms(spheres) in the system has been one of the core research topics and the Voronoi diagram of atoms has been studied quite extensively in recent years[12, 13].
By introducing the concept of α-shapes, Edelsbrunner and Mucke provided a basis for the applications of Voronoi diagram for a point set in reconstructing the shape from which the point set is produced[3]. They also provided very efficient codes to compute α-shapes using properties of Delaunay triangulation. Since α-shapes are fundamentally based on the rigorous theory of a Voronoi diagram of a point set and efficient and robust codes are available, α-shapes have been used in various applications. The main applications of α-shapes lie in the field of reasoning the surface shape which the point set defines. Based on this property, many researchers have tried to use it for reasoning the spatial structure of biological systems [4-7].
However, α-shapes have limitations in their applications in biological systems mainly due to the fact that α-shap ... 전체 초록 보기

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-410-014677364