메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기상학회 대기 대기 Vol.17 No.3
발행연도
2007.9
수록면
217 - 230 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Using the Lorenz-95 simple model, which can simulate many atmospheric characteristics, we compare the performance of ensemble strategies such as bred vectors, the bred vectors rotated (to be orthogonal to each bred member), and the Ensemble Transform Kalman Filter (ETKF). The performance metrics used are the RMSE of ensemble means, the ratio of RMS error of ensemble mean to the spread of ensemble, rank histograms to see if the ensemble member can well represent the true probability density function (pdf), and the distribution of eigen-values of the forecast ensemble, which can provide useful information on the independence of each member. In the meantime, the orthogonal bred vectors can achieve the considerable progress comparing the bred vectors in all aspects of RMSE, spread, and independence of members. When we rotate the bred vectors for orthogonalization, the improvement rate for the spread of ensemble is almost as double as that for RMS error of ensemble mean compared to the non-rotated bred vectors on a simple model. It appears that the result is consistent with the tentative test on the operational model in KMA. In conclusion, ETKF is superior to the other two methods in all terms of the assesment ways we used when it comes to ensemble prediction. But we cannot decide which perturbation strategy is better in aspect of the structure of the background error covariance. It appears that further studies on the best perturbation way for hybrid variational data assimilation to consider an error-of-the-day(EOTD) should be needed.

목차

Abstract
1. 서론
2. 모델 및 자료동화 방법
3. 앙상블 섭동 구성방법
4. 결과
5. 요약 및 결론
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-453-016247689