메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기상학회 Asia-Pacific Journal of Atmospheric Sciences 한국기상학회지 제41권 제3호
발행연도
2005.6
수록면
401 - 413 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (23)

초록· 키워드

오류제보하기
In this study, the systematic and random errors generated by dynamic downscaling have been corrected using Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) and compared for the reproduction of the realistic regional climate over South Korea for the period of 1990-2001. That is, the 10-daily January surface air temperature over South Korea produced by the regional model, MM5, has been corrected by MLR based on linear assumption between predictors and observation and by ANN which considers nonlinear relationship between the two and then the two corrected results have been compared for the examination of the improvement of model result. The correlation analysis with observation shows that the ANN-corrected results have a better correlation than those of MLR, although the results of the two methods show the 99% confidence level in the training process. On the contrary, the uncorrected results do not show any significant correlation. In the cross-validation process, as same as training, the ANN-corrected results have a better correlation than those of MLR. The confidence level of the cross-validated results using MLR is lower than those of trained results. Root Mean Square Error(RMSE) distribution also shows that the ANN-corrected results have a smaller RMSE than those of MLR in two processes so that ANN-corrected results are closer to an observation. Both the corrected results using two methods reproduce more realistic time series than uncorrected results in two processes. Particularly, ANN is superior to predicting the extreme values such as maximum and minimum temperature. From the scatter plot analysis, the ANN-corrected results have the much higher linear relationship with the observation than those of MLR. Through the analyses above, it is concluded that the systematic and random errors in the dynamically downscaled regional climate model can be improved using correction methods, and that the ANN-corrected results show better correction than those of MLR due to nonlinearity of the model characteristics.

목차

Abstract
1. 서론
2. 실험설계 및 방법
3. 결과분석
4. 요약 및 결론
사사
참고문헌

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-453-016245089