메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기상학회 Asia-Pacific Journal of Atmospheric Sciences 한국기상학회지 제41권 제6호
발행연도
2005.12
수록면
1,067 - 1,076 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this study, the systematic error such as climate drift of CME/PNU CGCM (CCM3-MOM3-Sea ice/Pusan National University Coupled General Circulation Model) has been corrected using Artificial Neural Network (ANN) model and the corrected results are cross-validated and compared with observation. The predictability of wintertime temperature of the cross-validated ANN-corrected CGCM has been evaluated. For this analyses, hindcast experiment has been performed for the period of 1971 ~ 2004 with CME/PNU CGCM. In this study, wintertime temperature of the CGCM hindcast results for the period of 1971/72~2001/02 are selected as predictand. Surface air temperature, precipitation, 850h㎩ temperature and 500-1000h㎩ thickness of the CGCM are used as input variables or predictors of the ANN model. Based on this, ANN model is built after proper iteration. The connection weight and the number of neuron are determined through many trial-error type experiments. The correlation analysis shows that the CGCM result is significantly correlated with observation at the 95% confidence level over the tropical ocean, but is not significant statistically over the other regions. In the meantime, the correlation coefficient between the ANN cross-validated result and observation is, however, very significant at the 95% confidence level over global. It also shows that the ANN cross-validated result has much smaller RMSE compare to the no-corrected CGCM indicating the ANN corrected result similar to the observation. The time series of winter temperature anomalies show significant correlation between observation and the CGCM as well as the ANN cross-validated result for DJF. Scores based on trisectional forecast, hit and false alarm rates indicate that the ANN cross-validated results have a distinguished predictability. Bases on the study, it is concluded that ANN model successfully reduces the systematic error of the CGCM and enhances predictability through the improvement of the CGCM result. Therefore ANN model can be an useful tool to correct bias of the CGCM.

목차

Abstract
1. 서론
2. 모형의 개요 및 검증 자료
3. 결과 분석
4. 요약 및 결론
사사
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-453-016238906