메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기상학회 Asia-Pacific Journal of Atmospheric Sciences 한국기상학회지 제41권 제6호
발행연도
2005.12
수록면
1,015 - 1,028 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The artificial neural network model based Nonlinear Multimodel Ensemble (NME) technique is developed to improve the skill of seasonal prediction. The participating model consists of four different general circulation models. The experiments of multimodel hindcast ensemble with identical initial and boundary conditions were performed in boreal winter. The hindcast period is 24 years, from 1979/80 to 2002/03. According to the forecast result of winter precipitation, the prediction skills estimated by NME are better than those of each participating model. It is founded that the improvement of predictability by NME technique is due to the correction of the spatial structure of the internal variability against Sea Surface Temperature Anomaly (SSTA) forcing. The empirical orthogonal function analysis of boreal winter precipitation shows two leading mode, which are El Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)-like modes. The spatial patterns of the two leading eigen-vectors for NME are more accurate than each participating models. To evaluate the effects of SSTA induced uncertainty on the predictability of multimodel ensemble, two hindcast experiments with different SSTA were conducted. One is prediction with observed SSTA and the other is with persisted SSTA. The NME with persisted SSTA degrades predictability about 25% against observed SSTA. There is additional 10 % skill degrading because of data inconsistency between training and forecast periods. It is founded that the temporal variation of SSTA affects the temporal variation of ENSO and PDO-like mode, and data inconsistency between training and forecast period affects the spatial structure of variability, too.

목차

Abstract
1. 서론
2. 참여 모델 및 과거재현 자료
3. 비선형 멀티모델 앙상블 계절 예측 및 검증
4. 계절 예측성에 대한 SSTA의 영향
5. 결론
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-453-016238875