메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 대한건축학회 논문집 - 계획계 大韓建築學會論文集 計劃系 第23卷 第11號
발행연도
2007.11
수록면
141 - 150 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This research focuses on Crime Prevention through Environmental Design(CPTED) method which is recently introduced in Korea. In specific, it investigates context deduction between spatial characteristics and burglaries in residential areas. Its basic analysis tool depends on Space Syntax(SS). This study collects a series of police data on robbery and theft which would be regarded as housing invasion types. It also figures out the key functions of SS variables in terms of connectivity, control value, and integration. In a comparative perspective between crime occurrence sites and non-crime ones, it calculates mean values of SS-related variables using independent T-test. For the in-depth analyses, it matches crime occurrences with various building types. Furthermore, it applies ArcGIS to measure the distances from crime spots to street lights.
When this study applies Space Syntax methods to crime occurrences, the average mean values at crime occurrence sites are higher than those at non-crime sites. It implies the fact that building’s main type is pivotal in controlling crime rates. Furthermore, neighborhood facilities with meager territoriality seem extremely vulnerable to crimes. In terms of single detached housing units, it reveals relatively weaker characters in the night-time crime occurrences than those in the day-time ones. In contrast, there exists positive relationship between the distance from street lights and the night-time crime occurrences. All of these indicators imply that the CPTED approach is relevant in designing defensible space in our cities.

목차

Abstract
1. 서론
2. 이론적 배경 및 선행연구
3. 공간특성별 공간분석기법 적용 방법론
4. 공간분석기법을 이용한 공간특성과 주거침입범죄와의 관계 분석
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-540-016084560