메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Demands have been growing in safety-critical application fields for producing networked real-time embedded computing (NREC) systems together with acceptable assurances of tight service time bounds (STBs). Here a service time can be defined as the amount of time that the NREC system could take in accepting a request, executing an appropriate service method, and returning a valid result. Enabling systematic composition of large-scale NREC systems with STB certifications has been recognized as a highly desirable goal by the research community for many years. An appealing approach for pursuing such a goal is to establish a hard-real-time (HRT) component model that contains its own STB as an integral part. The TMO (Time-Triggered Message-Triggered Object) programming scheme is one HRT distributed computing (DC) component model established by the first co-author and his collaborators over the past 15 years. The TMO programming scheme has been intended to be an advanced high-level RT DC programming scheme that enables development of NREC systems and validation of tight STBs of such systems with efforts far smaller than those required when any existing lower-level RT DC programming scheme is used. An additional goal is to enable maximum exploitation of concurrency without damaging any major structuring and execution approaches adopted for meeting the first two goals. A number of previously untried program structuring approaches and execution rules were adopted from the early development stage of the TMO scheme. This paper presents new concrete justifications for those approaches and rules, and also discusses new extensions of the TMO scheme intended to enable further exploitation of concurrency in NREC system design and programming.

목차

1. INTRODUCTION
2. OVERVIEW OF THE BASIC TMO PROGRAMMING SCHEME
3. CONCURRENCY RULES IN THE TMO MODEL FOR EASING THE DERIVATION OF HARD BOUNDS FOR SERVICE TIMES
4. NEW EXTENSIONS OF THE TMO MODEL FOR FURTHER INCREASE OF CONCURRENCY
5. SUBSTANTIATION FOR THE BCC PROPOSITION
6. CONCLUSION
ACKNOWLEDGEMENTS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016057348