메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Drug discovery is a long process with a low rate of successful new therapeutic discovery regardless of the advances in information technologies. Identification of candidate proteins is an essential step for the drug discovery and it usually requires considerable time and efforts in the drug discovery. The drug discovery is not a logical, but a fortuitous process. Nevertheless, considerable amount of information on drugs are accumulated in UniProt, NCBI, or DrugBank. As a result, it has become possible to try to devise new computational methods classifying drug target candidates extracting the common features of known drug target proteins. In this paper, we devise a method for drug target protein classification by using weighted feature summation and Support Vector Machine. According to our evaluation, the method is revealed to show moderate accuracy 85~90%. This indicates that if the devised method is used appropriately, it can contribute in reducing the time and cost of the drug discovery process, particularly in identifying new drug target proteins.

목차

요약
1. Introducntion
2. Material and methods
3. Validation and result
4. Discussion
5. Conclusion and future work
6. References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015984728