메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
생체데이타 프로세싱이란 인간개체로부터 얻을 수 있는 고유의 생체 신호를 이용하여 다양한 목적으로 사용하는 것으로, 최근 이에 대한 요구가 높아지고 있다. 생체데이타는 도메인의 특성상, 클래스의 수는 많고 해당 클래스 내의 데이타는 상당히 제한적일 수 있어서 그만큼 데이타 내에 포함된 노이즈에 민감하게 된다. 따라서 기존의 패턴 인식과 분류 방법을 그대로 적용하여 개발된 시스템의 경우는 높은 일반화 성능을 기대하기 힘들다. 이를 해결하기 위해 본 논문에서는 생체데이타가 가지는 특성을 고려하여 각 클래스 고유의 특성에 영향을 미치는 클래스 요인과 노이즈와 같이 전체 데이타에 영향을 미치는 환경 요인으로 구성된 변형된 팩터 분석 모델로 생체데이타 생성 모델을 정의한다. 이를 바탕으로 분류에 필요한 데이타간 이격(inter-data discrepancy) 정보를 추출하고 새로운 유사도 함수를 정의하여 분류기에 적용한다. 제안하는 방법은 분류 대상이 되는 클래스의 정보 활용을 극대화 하여 적은 수의 데이타로부터 노이즈에 강인한 결과를 얻을 수 있다. 실제 생체데이타를 적용한 실험에서 제안하는 방법이 기존의 방법보다 우수한 분류 성능을 보임을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 데이타 생성 모델
3. 분류 시스템
4. 실험
5. 결론
참고문헌

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016859511