메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering 한국정밀공학회지 제21권 제9호
발행연도
2004.9
수록면
85 - 94 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As over 70% of the total life cycle cost (LCC) of a product is committed at the early design stage, designers are in an important position to substantially reduce the LCC of the products they design by giving due to life cycle implications of their design decisions. During early design stages, there may be competing concepts with dramatic differences. In addition, the detailed information is scarce and decisions must be made quickly. Thus, both the overhead in developing parametric LCC models for a wide range of concepts, and the lack of detailed information make the application of traditional LCC models impractical. A different approach is needed, because a traditional LCC method is to be incorporated in the very early design stages. This paper explores an approximate method for providing the preliminary LCC. Learning algorithms trained to use the known characteristics of existing products might allow the LCC of new products to be approximated quickly during the conceptual design phase without the overhead of defining new LCC models. Artificial neural networks are trained to generalize product attributes and LCC data from pre-existing LCC studies. Then the product designers query the trained artificial model with new high-level product attribute data to quickly obtain an LCC for a new product concept. Foundations for the learning LCC approach are established, and then an application is provided.

목차

ABSTRACT
1. 서론
2. 이론적 고찰
3. 학습 LCC 모델의 개발
4. 학습 LCC 모델의 실험
5. 결론 및 향후 연구 과제
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-555-016823208