메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Local alignment 알고리즘은 두 문자열을 비교하여 크기가 ℓ, 유사도 점수가 s인 부분 문자열쌍을 찾는다. 크기가 충분히 크고 유사도 점수도 높은 부분 문자열 쌍을 찾기 위해 단위 길이당 유사도점수 s/ℓ을 최대화하는 정규화 방법이 제안되어있다. 본 논문에서는 증가함수 f, g를 도입하여 f(s)/g(ℓ)을 최대화하는, 함수에 의한 정규화 방법을 제시한다. 여기서 함수 f, g는 DNA 서열을 비교하는 실험을 통해 정한다. 이러한 실험에서 함수에 의한 정규화 방법이 좋은 local alignment를 찾는다. 또한 유사도 점수의 기준으로 longest common subsequence를 채택한 경우, 기존의 정규화 알고리즘을 이용하면 별다른 시간손실 없이 함수에 의해 정규화된 점수 f(s)/g(ℓ)을 최대화 할 수 있음을 보인다.

목차

요약
Abstract
1. 서론
2. 기존의 정규화 방법
3. 새로운 함수에 의한 정규화(LANF) 방법
4. 실험 결과
5. 결론
참고문헌

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016729083