메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 대한기계학회 논문집 A권 대한기계학회논문집 A권 제31권 제6호
발행연도
2007.6
수록면
651 - 658 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A new tree-structured neural network classifier is proposed for the automatic real-time inspection of coldrolled steel strip surface defects. The defects are classified into 3 groups such as area type, disk type, area & line type in the first stage of the tree-structured neural network. The defects are classified in more detail into 11 major defect types which are considered as serious defects in the second stage of neural network. The treestructured neural network classifier consists of 4 different neural networks and optimum features are selected for each neural network classifier by using SFFS algorithm and correlation test. The developed classifierdemonstrates very plausible result which is compatible with commercial products having high world-wide market shares.

목차

Abstract
1. 서론
2. 결함의 종류와 발생원인
3. 특징 선정
4. 신경망 분류기
5. 실험 및 결과
6. 결론
후기
참고문헌

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-016691878