메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국경영과학회 Management Science and Financial Engineering International Journal of Management Science Vol.13 No.1
발행연도
2007.5
수록면
73 - 91 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We investigate factors that influence the choice of high?share brands (HSBs) vs. low?share brands (LSBs) among various product and consumer characteristics related to brand?share perceptions. Specifically, using 8 product categories varying in terms of purchase decision involvement, we show how the influencing factors vary across the categories. At the general level that cover all the 8 categories, our hierarchical Bayesian regressions analysis shows that factors that favor high?share brands are purchase decision involvement, search goods, experience goods, price?quality relationship, positive network externalities, and price?prestige beliefs. Conversely, consumers who value variety seeking and need for uniqueness favor low?share brands. The effects of these factors, however, vary across product categories. The identification of these characteristics can help brand managers establish a more effective brand?share strategy in such areas as setting an optimal market share goal, extending a brand, and developing ad copy. Furthermore, our consumer segmentation analysis demonstrates the general market has two distinct segments ? (1) a segment composed of HSB buyers (86%) and (2) a segment composed of LSB buyers (14%). The two segments are also shown to have different significant factors that explain their brand choice. Our segmentation analysis can help marketers establish a marketing strategy that targets a specific segment of interest.

목차

ABSTRACT
1. Introduction
2. A Review of Brand Share and Consumer Preferences
3. HSB vs. LSB Choice Model: Cross-category Model
4. General Discussion
References

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-016677977