메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
서비스 로봇의 물체 인식은 배달, 심부름 같은 로봇이 수행하는 대부분의 서비스를 위해 매우 중요하다. 기존의 방법은 산업 환경에서 기하학적 모델에 기반 하여 물체를 인식하였으나, 환경 조건이 변화하고 로봇의 이동이 발생하는 실내 환경에서는 로봇의 위치에 따라 영상 속에서 물체가 가려져 있거나 작을 수 있어 인식이 잘되지 않는 상황이 발생한다. 이러한 불확실한 상황을 해결하기 위해 본 논문에서는 영상에서 인식된 물체들을 컨텍스트 정보로 사용하여 관심 있는 물체의 존재를 추론하기 위한 방법을 제안한다. 이를 위해 베이지안 네트워크와 온톨로지를 함께 사용하여 확률적 프레임 안에서 도메인 지식을 모델링하기 위한 방법과 추론 모델의 확장을 위해 동적으로 베이지안 네트워크를 생성하고 추론하는 방법을 제안한다. 실험을 통해서 이러한 방법의 성능을 검증하였고 확률적 모델 안에서 귀납적 추론이 갖는 장점을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 제안하는 모델링 및 추론 방법
3. 실험 및 결과
4. 결론 및 토의
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016602741