메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SP 電子工學會論文誌 SP編 第44卷 第1號
발행연도
2007.1
수록면
94 - 104 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 일반적인 홍채 인식 시스템에서 취득된 홍채 영상에는 홍채 패턴 정보를 가리는 눈꺼풀이 포함된다. 이러한 눈꺼풀은 홍채 인식의 성능을 저하시키는 요소이다. 따라서 본 논문에서는 홍채인식의 정확성을 향상시키기 위해 눈꺼풀 검출 알고리즘을 제안한다. 본 연구는 기존의 방법에 비해 다음과 같은 세 가지 차별성과 장점을 가지고 있다. 첫 번째, 눈꺼풀 검출에 문제가 되는 속눈썹과 조명 반사광(specular reflection)을 기존의 방법에 의해 검출한 후에, 선형 보간법(interpolation)을 이용하여 제거하는 방법을 제안함으로써 눈꺼풀 추출의 정확도를 향상하였다. 두 번째, 기존의 알고리즘은 눈꺼풀 후보점을 추출하기 위해 홍채의 넓은 부분을 탐색하므로 영상잡음이나 홍채 패턴 등에 의해 눈꺼풀을 잘못 추출하는 경우가 많았다. 이러한 문제를 해결하기 위하여 본 논문에서는 검출된 홍채의 외곽경계 정보에 의해 초기 눈꺼풀 탐색 영역을 결정하고, 마스크 기법을 이용하여 눈꺼풀 후보점들을 추출함으로써 눈꺼풀 추출 에러를 감소시켰다. 세 번째, 기존의 알고리즘들은 포물선 방정식에 의해 눈꺼풀 영역을 검출하지만, 사용자의 눈의 회전을 고려하지 않았기 때문에 많은 에러가 발생되었다. 따라서 제안하는 알고리즘은 눈의 회전을 고려한 회전된 포물선 방정식을 이용한 허프 변환(Hough transform)을 통해 눈꺼풀을 검출함으로써 이러한 에러 발생을 감소시켰다.
CASIA 데이터베이스의 홍채 영상을 사용하여 제안하는 눈꺼풀 검출 알고리즘을 실험한 결과, 위 눈꺼풀의 검출 정확도는 90.82%, 아래 눈꺼풀의 검출 정확도는 96.47%였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안하는 눈꺼풀 검출 알고리즘
Ⅲ. 실험
Ⅳ. 결론
참고문헌
저자소개

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017672452