메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2006년 추계학술대회 논문집
발행연도
2006.11
수록면
427 - 430 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Clustering for gene expression data without filtering out noise genes may be distorted or derived inappropriate inference. Identifying significant genes and deleting noise before major analysis is necessary for meaningful discovery from genes expression pattern. We proposed a new method of finding significant genes using factor analysis which is done on transposed data matrix. We construct significance score that is sum of factor loadings for declared significant number of factor, and set threshold through replication. Our proposed method works well for simulated time-course data for finding significant genes even though variance level gets larger.

목차

Abstract
1. Introduction
2. Proposed method
3. Numerical experiments
4. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-017586346