메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.20 No.12
발행연도
2006.12
수록면
2,013 - 2,024 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a condition classification system using wavelet transform, feature evaluation and artificial neural networks to detect faulty products on the production line of reciprocating compressors for refrigerators. The stationary features of vibration signals are extracted from statistical cumulants of the discrete wavelet coefficients and root mean square values of band-pass frequencies. The neural networks are trained by the sample data, including healthy or faulty compressors. Based on training, the proposed system can be used on the automatic mass production line to classify product quality instead of people inspection. The validity of this system is demonstrated by the on-site test at LG Electronics, Inc. for reciprocating compressors. According to different products, this system after some modification may be useful to increase productivity in different types of production lines.

목차

1. Introduction
2. Theoretical Backgrounds
3. Condition Classification of Reciprocating Compressors
4. Conclusions
Acknowledgement
References

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-017531915