메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신태진 (인하대학교) 이상권 (인하대학교) 장지욱 (인하대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering 한국정밀공학회지 Vol.29 No.12
발행연도
2012.12
수록면
1,313 - 1,320 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Condition monitoring of the reciprocating compressor is important task. As a traditional method, health monitoring system of refrigerator depends on decision of a skilled person based on his experience. However, the skilled person cannot monitor all the compressors completely. If a sampled compressor is faulty, thousands of compressors manufactured at that place are regarded as faulty compressors. Therefore it is necessary to monitor all compressors in the production line. In the paper real time health monitoring system is developed based on high order time frequency method and artificial neural network. The system is installed in the mass production line. The result of the application has been very successful, and currently the system is working very well on the production line.

목차

1. 서론
2. 인공 신경망 회로(ANN) 이론
3. 결함 특징 추출 기술
4. 압축기의 계측 시스템
5. 결론
후기
참고문헌

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-555-000907929