메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국대기환경학회 한국대기환경학회지(국문) 한국대기환경학회지 제22권 제5호
발행연도
2006.10
수록면
614 - 626 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Using the data of three environmental monitoring sites in Pohang area (KME112, KME113, and KME114), statistical forecasting models of the daily maximum and mean values of PM10 have been developed. Since the distributions of the daily maximum and mean PM10 values are skewed, which are similar to the Weibull distribution, these values were log-transformed to increase prediction accuracy by approximating the normal distribution. Three statistical forecasting models, which are regression, neural networks (NN) and support vector regression (SVR), were built using the log-transformed response variables, i.e., log (max (PM10)) or log (mean (PM10)). Also, the forecasting models were validated by the measure of RMSE, CORR, and IOA for the model comparison and accuracy. The improvement rate of IOA before and after the log-transformation in the daily maximum PM10 prediction was 12.7% for the regression and 22.5% for NN. In particular, 42.7% was improved for SVR method. In the case of the daily mean PM10 prediction, IOA value was improved by 5.1% for regression, 6.5% for NN, and 6.3% for SVR method. As a conclusion, SVR method was found to be performed better than the other methods in the point of the model accuracy and fitness views.

목차

Abstract
1. 서론
2. 포항시 미세먼지 현황
3. 미세먼지 예보모형의 개발
4. 미세먼지 예보모형의 평가
5. 결론 및 토의
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-539-017398648