메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
히스토그램은 원본 데이타를 효과적으로 요약하는 기법중의 하나 이며, 선택도 측정과 근사 질의 처리 등에 널리 사용되고 있다. 기존의 히스토그램 구축 알고리즘들은 하나의 값으로 표현되는 점 데이타에 대하여 적용 가능한 알고리즘 이었다. 그러나 일상생활에서는 하루 동안의 온도, 주식 가격과 같은 구간 데이타들도 점 데이타만큼 흔하게 접할 수 있다. 본 논문에서는 기존의 Max 에러에 대한 히스토그램 구축 알고리을 구간 데이터에 대하여 확장한다. 합성 데이타를 사용한 실험을 통하여 기존의 점 데이타에 대한 히스토그램을 초보적으로 확장하는 방법보다 본 논문에서 제시된 알고리즘의 성능이 좋다는 것을 보였다.

목차

요약
1. 서론
2. 관련 연구
3. 기본 개념
4. 구간 데이타에 대한 최적 히스토그램 구축 알고리즘
5. 실험 결과
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017371665