메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
음악은 삶의 일부이며 상황에 따라 많은 영향을 받는다. 그러나 음악 추천 시스템에 관한 기존 연구들에서는 사용자로부터 획득한 몇 가지 메타데이타(장르, 아티스트 등)만을 내용기반 필터링으로 분석하여 이용함으로써 적절한 상황을 고려하지 못하는 문제점이 있었다. 최근 들어 환경의 몇 가지 상태(온도, 습도 등)변화를 적용한 추천 연구가 이루어지고 있지만 상황으로서 이해하기는 부족한 실정이다. 그러므로 우리는 기존연구에서의 메타데이타는 물론 상황정보를 동적으로 반영하여 사용자가 더욱 만족할 수 있는 음악을 추천하는 것을 제안한다. 또한 사용자에 의한 피드백이 가능함으로써 서비스를 더 향상시킬 수 있다.
이를 해결하기 위해 본 논문에서는 음악 선곡에 필요한 상황정보를 정의하고 내용기반 필터링 기법을 사용하여 사용자의 취향과 상황에 적합한 음악 추천 시스템을 설계한다. 본 추천 시스템에서는 홈 네트워크 환경에서 상황정보를 인식하기 위해 OSGi 프레임워크를 사용하였으며 서비스 이동성 및 분산처리를 지원하여 음악 선곡에 대한 사용자의 만족도와 서비스의 질을 향상 시켰다.

목차

요약
Abstract
1. 서론
2. 관련 기술
3. 상황정보를 고려한 음악 추천 시스템
4. 시스템 설계 및 구현
5. 실험
6. 결론 및 향후연구
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017341989