메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김재광 (성균관대학교) 윤태복 (성균관대학교) 김동문 (성균관대학교) 이지형 (성균관대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제19권 제4호
발행연도
2009.8
수록면
504 - 510 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
근래 들어 개인 적응형 서비스에 대한 관심이 높아지고 있으나 아직 음악에 관련된 서비스는 보편화되어 있지 않다. 그 이유는 음악의 관련 정보를 분석하는 것이 텍스트 기반의 자료에 비해 어렵기 때문이다. 이에 본 논문은 사용자가 선택했던 음악을 분석해서 사용자의 성향을 파악하고 그와 유사한 음악을 추천해주는 시스템을 제안한다. 음악의 속성을 추출하는 방법으로 음파 분석 기법을 사용한다. 음파에서 세 가지의 수치화된 속성을 추출하여 이를 특성 공간에 나타낸다. 이 때 사용자가 선택한 음악이 많이 모여 있는 군집을 분석한다면, 사용자의 취향을 파악할 수 있다. 하지만 몇 개의 군집이 형성될 것인지를 예측하기란 쉽지 않다. 이를 해결하기 위하여 군집의 수를 상황에 따라 유동적으로 변경할 수 있는 가변형 K-means 기법을 제시한다. 이 기법은 군집의 직경 크기를 제한하여, 일정치 이상일 때 군집의 수를 늘리는 방법으로 데이터의 범위를 알고 있을 때 매우 효율적으로 적용할 수 있다. 이 방법을 이용하여 군집의 중심을 찾고 이와 가까운 음악을 추천한다. 또한 사용자의 성향은 꾸준하게 변화하므로 본 논문은 사용자가 근래에 선택한 음악의 반영 비율을 높이고자 무게의 개념을 이용한 시간 가중치 기법을 적용하였다. 그리고 음악의 발매 시기도 고려하여 음악을 추천하는 시스템을 제안한다. 제안 방법의 검증을 위하여 100개의 음악 조각을 통한 실험적 검증을 하였으며 그 결과 제안 방법이 효과적인 것을 보인다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 시스템
4. 실험 결과
5. 결론
참고문헌
저자소개

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-018931972