메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 패턴 분류문제를 위하여 가중치 개념을 갖는 퍼지 최대-최소 신경망 모델을 제안한다. 제안된 모델은 기존의 FMM신경망 모델에 대하여 학습데이타에 포함되는 특징값의 빈도요소를 효과적으로 반영할 수 있도록 수정한 구조를 갖는다. 본 논문에서는 제안된 모델에 대하여 하이퍼박스 소속함수로 정의되는 새로운 활성화 특성과 학습알고리즘을 정의한다. 학습알고리즘은 하이퍼박스 생성 및 확장, 중첩 테스트, 하이퍼박스 축소의 3단계 과정으로 이루어지며, 각 과정에서 특징값의 빈도요소를 고려하여 가중치값을 갱신하는 규칙이 새롭게 정의된다. 본 연구에서는 또한 제안된 모델의 응용으로서 특징분석 기법을 제안한다. 이를 위하여 특징값, 특징유형, 하이퍼박스, 패턴클래스 상호간 연관도 요소를 4가지 유형의 척도로 정의하여, 주어진 패턴분류 문제에서 각 특징의 상대적 중요도를 평가할 수 있도록 한다. 아이리스 데이타와 클리블랜드 의료데이타에 대한 분류문제에 적용한 실험결과를 통하여 제안된 방법의 타당성을 고찰하였다.

목차

요약
Abstract
1. 서론
2. FMM 신경망
3. 가중치를 고려한 FMM 신경망
4. 특징 선정 기법
5. 실험 및 결과
6. 결론 및 향후 과제
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017209146