메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.20 No.5
발행연도
2006.5
수록면
591 - 601 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we present a new control methodology for perturbed crane systems. Nonlinear crane systems are transformed to linear models by feedback linearization. An inverse dynamic equation is applied to compute the system PD control force. The PD control parameters are selected based on a nominal model and are therefore suboptimal for a perturbed system. To achieve the desired performance despite model perturbations, we construct a neural network auxiliary controller to compensate for modeling errors and disturbances. The overall control input is the sum of the nominal PD control and the neural auxiliary control. The neural network is iteratively trained with a perturbed system until acceptable performance is attained. We apply the proposed control scheme to 2- and 3-degree-of-freedom (D.O.F.) crane systems, with known bounds on the payload mass. The effectiveness of the control approach is numerically demonstrated through computer simulation experiments.

목차

Abstract
1. Introduction
2. Controller Design of Crane Systems
3. 2-D.O.F. Crane system
4. 3-D.O.F. Crane System
5. Simulation Examples and Results
6. Conclusions
Acknowledgments
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-015505099