메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김만순 김상욱 (한양대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회 종합학술대회 논문집 한국콘텐츠학회/한국통신학회 2003 추계 종합학술대회 논문집 제1권 제2호
발행연도
2003.11
수록면
290 - 297 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
시계열 데이터베이스란 객체의 변화되는 값들의 연속으로 구성된 데이터 시퀀스들의 집합이며, 타임 워핑 하의 서브시퀀스 매칭은 주어진 질의 시퀀스와 타임 워핑 거리가 허용치 이하인 서브시퀀스들을 시계열 데이터베이스로부터 찾아내는 연산이다. 본 논문에서는 먼저 타임 워핑 하의 시퀀스 매칭을 지원하는 기존의 기법들의 특성을 지적하고, 이들을 전체 매칭 및 서브시퀀스 매칭에 각각 적용하는 방안에 관하여 논의한다. 또한, 실제 주식 데이터를 이용한 다양한 실험을 통하여 이들에 대한 정량적인 성능 평가를 수행한다. 타임 워핑 하의 서브시퀀스 매칭을 위한 기존 기법들의 성능을 상호 비교한 연구 결과는 아직 제시된 바 없다. 따라서 본 연구 결과는 이러한 세 가지 기법들에 대한 성능을 제시하는 좋은 자료로서 사용될 수 있을 것이다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 용어 정의

Ⅲ. 기존의 기법들에 관한 고찰

Ⅳ. 성능 평가

Ⅴ. 결론

감사의 글

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-015339836