메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국엔터프라이즈아키텍처학회 정보기술아키텍처 연구 정보기술아키텍처 연구 제10권 제1호
발행연도
2013.1
수록면
79 - 91 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 히스토그램 시퀀스(histogram sequence)에 저차원 변환을 적용할 때, 어떤 공간 채움 곡선(space filling curve: SFC)의 성능이 가장 좋은지를 판단하는 체계적인 평가방법을 제안한다. 히스토그램 시퀀스는 이미지를 주어진 SFC에 따라 시계열 형태로 표현한 것을 말한다. 히스토그램 시퀀스는 매우 고차원이므로 저장 및 검색이 매우 어렵다. 효율적인 저장 및 검색을 위해서 시계열 저차원 변환의 하한을 사용할 수 있는데, 이 하한의 성능은 SFC의 종류에 따라 큰 영향을 받게 된다. 본 논문에서는 히스토그램 시퀀스를 저차원 변환할 때 어떤 SFC의 성능이 좋은지를 평가하기 위해, “히스토그램 시퀀스에서 엔트리들이 인접하면 이미지에서도 해당 셀들이 인접해야 한다”는 공간지역성(spatial locality)의 개념을 제안한다. 다음으로, 공간 지역성을 정량적으로 평가할 수 있는 공간 지역성 보존 척도(spatial locality preservation metric)를 제안하고, 이를 계산하기 위한 정형적인 방법을 제시한다. 본 논문에서는 공간 지역성 보존 척도 측면에서 총 다섯 가지의 SFC를 평가하고, 이 평가 결과가 실제 이미지 매칭의 저차원 변환 성능 평가와 유사함을 확인한다. 또한, 저차원 변환 기반의 k-NN(k-nearest neighbors) 검색을 실험하여, 공간 지역성 보존 척도가 가장 낮은 힐버트-오더가 k-NN 검색에서도 가장 좋은 성능을 보임을 통해, 제안한 공간 지역성 보존 척도의 유용성을 입증한다.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0