메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국광학회 한국광학회지 한국광학회지 제16권 제5호
발행연도
2005.10
수록면
423 - 427 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는, 원리적인 다양한 장점에도 불구하고 현실적인 제약으로 인해 실제 설계과정에서 잘 적용되지 않는, 자이델 3차 수차를 간편하게 다룰 수 있는 방안을 제안한다. 먼저 유한 물체거리를 갖는 2 반사경계에 대해 자이델 3차의 구면수차계수를 유도한다. 여기서, 유도된 구면수차계수는 고차의 비선형 방정식으로 표현되는데, 그 구성은 설계변수(물체거리, 주경 및 부경의 곡률, 주경과 부경 사이의 거리)와 유효초점거리로 이루어진다. 해석적으로 표현된 고차의 비선형 구면수차 방정식은 컴퓨터를 이용한 수치기법에 의해 근사적인 제로조건을 만족하도록 풀려진다. 이렇게 구해진 다양한 수치 해들을 주의 깊게 통찰하면 주경과 부경의 곡률 간에 선형성이 존재함을 파악할 수 있다. 즉, 결과적으로 주경과 부경의 곡률들을 선형맞춤(linear fitting)하면 곡률선형방정식이 얻어지는데, 이의 의미는 약간의 대수적인 계산으로 최적화의 초기 입력 데이터를 손쉽게 얻을 수 있는 가능성을 제시한 것이다. 한편, 응용외의 순수 수차론적인 관점에서 본다면, 본 연구의 특징은 유한 물체거리를 갖는 2 반사경계의 주경 및 부경의 곡률들이 구면수차가 거의 제로가 되는 조건 하에서 상호간에 선형 관계가 존재하였다는 것이다.

목차

국문초록

Ⅰ. 서론

Ⅱ. 유한 물체거리를 갖는 2 반사경계에 대해 자이델 3차의 구면수차계수 유도

Ⅲ. 유한물체거리를 갖는 2 반사경계에서 구면수차가 보정된 해

Ⅳ. 유한물체거리를 갖는 2 반사경계의 곡률선형방정식

Ⅴ. 결론

감사의 글

참고문헌

Abstract

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : G300-j12256285.v16n5p423